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The Local-Nonequilibrium Temperature Field Around 
the Melting and Crystallization Front Induced by 
Picosecond Pulsed Laser Irradiation 1 

S. L. Sobolev 2 

The local-nonequilibrium model for heat transport around melting and crys- 
tallization zone induced by ultrafast laser irradiation is considered. The model 
predicts strong overheating during melting of the material near the interface. 
Moreover, the local-nonequilibrium effects lead to an interface temperature 
gradient steeper than expected from the classical heat flow calculations. Possible 
modification of the kinetics of melting to include the relaxation effects is also 
discussed. 
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1. I N T R O D U C T I O N  

Pulse laser processing of materials, especially semiconductors, is a field of 
condensed matter physics and materials science that has developed rapidly 
over the recent years. It has proved to be of considerable interest in both 
applied and fundamental research for a variety of reasons discussed exten- 
sively in the literature [ 1-13]. Irradiation of materials with laser pulses in 
the nanosecond to picosecond range extends traditional studies of melting- 
solidification kinetics and thermodynamics to extreme velocities. It 
provides a unique tool for well-controlled studies of physical processes 
occurring far from thermodynamic equilibrium. Most existing theoretical 
models [ 1-3] rely on equilibrium thermodynamics and assume a local 
equilibrium at the solid-liquid interface. For low interface velocities this 
assumption is valid. However, the motion of phase interface induced by 
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laser pulses in the nanosecond to picosecond range can be so rapid [4-10] 
that the local equilibrium assumption is no longer valid and deviations 
from local equilibrium at the interface must be considered. The hyperbolic 
[ 11, 12, 16] and two-temperature [ 13, 16] phase change problems, which 
go beyond the local-equilibrium assumption, have received little attention 
in the literature. 

The most active branch in phenomenological nonequilibrium thermo- 
dynamics, which does not adopt the local-equilibrium assumption, is the  
so-called extended irreversible thermodynamics (EIT) [ 14]. EIT introduces 
a phenomenological generalized entropy, as well as other thermodynamic 
functions, which, in addition to the usual local-equilibrium variables, 
encludes dissipative fluxes as independent variables. 

The motion of phase interface during pulsed laser irradiation is deter- 
mined by two distinct processes: (i) interface kinetics, i.e., the rate at which 
atoms leave and join phases, and (ii) heat-flow balance between conduction 
into the substrate, energy of a laser pulse, and enthalpy change at the inter- 
face. The objective of this paper is to provide a conceptual foundation, and 
a mathematical model based on it, for the study of the heat transport and 
interface kinetics associated with rapid melting and solidification during 
pulsed laser irradiation. This is achieved by using the concepts of EIT. 

2. LOCAL-NONEQUILIBRIUM TEMPERATURE FIELD 

2.1. Equations 

According to EIT, the heat flux q is an independent variable, and in 
the simplest case its evolution is governed by the Maxwell-Cattaneo equa- 
tion [14] (see also Refs. 15 and 16), 

Oq 
q + r ~ - =  - 2 V T  (1) 

where r is the relaxation time of q, T is the temperature, and 2 is the ther- 
mal conductivity. Introducing Eq. (1) into the energy balance equation 

OT 
cp ~-[= - V q  + W (2) 

one is led, for constant coefficients 3, 4, and C, to the hyperbolic heat con- 
duction equation (HHCE) 

OT 02T ~ OW 
c p - ~ + v c p ~ _ - - 2 V - T +  W+r 0-7- (3) 
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where c is the specific heat, p is the mass density, and W is the heat source 
due to the laser pulse. The hyperbolic equation, Eq. (3), differs from the 
usual heat conduction equation of the diffusion type by having two addi- 
tional terms: a second-order time derivative of the temperature, OZT/Ot 2, 
and a first-order time derivative of the heat source, 0 W/Ot. The presence of 
the second-order time derivative is conceptually important because it 
allows one to avoid the paradox of propagation of thermal disturbances 
with an infinite velocity [14, 15]. Although the presence of the time 
derivative of the intensity of the heat source, OW/Ot, in Eq. (3), does not 
affect the total energy balance of the system, it does significantly influence 
the shape of the pulse of energy absorbed by the system, i.e., the shape 
becomes W+ r O W/Ot. The additional time derivatives 02T/Ot 2 and OW/Ot 
in Eq. (3) can be described as a thermal "inertia" [ 14-16]. Note that the 
presence of the second-order derivative in time makes it necessary to sup- 
plement Eq. (3) with the additional initial condition O T/Ot[,=o. 

Eliminating T from Eqs. (1) and (2), one can derive an equation for 
the heat flux q, and like Eq. (3), this equation is of the hyperbolic type: 

Oq . 02q 
~--t- r ~-~2 = a V(Vq)-a  VW (4) 

where a = 2/cp is the thermal diffusivity. Both Eq. (3) and Eq. (4) imply a 
finite speed of thermal disturbances, 

U =  (a/r)  ~/'- (5) 

Note that the heat flux q is now an independent variable and one needs to 
supplement Eq. (4) with two initial conditions, q[,=0 and Oq/Ot[,=o. 

2.2. Interface Conditions 

To derive the interface conditions, we integrate Eqs. (1) and (2) over 
an infinitesimal zone that includes the interface. For the sake of simplicity, 
we assume that the parameters C, p, and 2 do not change at the interface. 
In such a ease, the interface conditions are given as [ 16] 

( v2) V Q  1--~_ 
[ T] - U2 cp 

--1 
(6) 

(7) 
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where brackets denote the difference in a value ahead of and behind the 
interface, V is the interface velocity, and Q is the total heat released at the 
interface. The interface conditions, Eqs. (6) and (7), for the hyperbolic 
phase change problem, Eqs. (3) and (4), clearly demonstrate that the inter- 
face is a surface of strong discontinuity, i.e., there are jumps in temperature, 
Eq. (6), and heat flux, Eq. (7), at the interface. If r--* 0 and, hence, U,> V, 
the jump conditions, Eqs. (6) and (7), reduce to the classical interface con- 
ditions IT]  = 0  and [q]eq=Q.  In such a case the temperatures ahead of 
the interface TI and behind the interface T 2 are equal to the temperature 
of the equilibrium phase transition (melting temperature) Tm. For a 
relatively high interface velocity V~ U, the local-nonequilibrium nature of 
heat transport under extreme conditions leads to the temperature jump 
IT]  = T ~ -  T2 4=0 at the interface. Note that the jumps in temperature, 
Eq. (6), and heat flux, Eq. (7), at the interface result from the assumption 
of the infinitely thin region of phase change. In the case of the interface of 
finite width, Eq. (6) and (7) give the temperature and heat flux change over 
the interface width [16]. The temperature discontinuity can also be 
smoothed by introduction in HHCE, Eq. (3), the effective "temperature 
viscosity," i.e., an additional mixed derivative 03r/otOX 2 [15]. Such an 
additional mixed derivative arises in the two-temperature heat conduction 
model [ 13, 16] and in EIT [ 14] due to spatial nonlocal effects. 

Taking into account the energy balance at the interface, the jump con- 
dition, Eq. (6), can be written in another form: 

r , - r ,  m2( g2x  -1 
T,_- To U2 1 U2 j (8) 

where To is the initial temperature. At reasonable values for U ~  103m • s-1 
[7] and V'-/U2=0.3, which corresponds to the laser heating experiments 
[6-10, 17], the jump condition, Eq. (8), gives strong interface overheating 
T1 - T 2  = 0.43( T 2 -- To). In the approximation 7"_, ~ Tm and T m ~ To, we 
obtain T1-Tm=0.43Tm, which is in agreement with the experimental 
results [6-10, 17]. 

The interface conditions, Eqs. (6) and (7), are written in terms of both 
T and q. Eliminating q between Eq. (1) and Eq. (7), the interface condition 
for the temperature field is found: 

- 2  8TI = - 2 OT" 8X - - ~ + A + r , / l - L ( V + r f z ( 1  +2V'-/U2))(1 - V'-/U'-)-' (9) 

where A is the heat flux due to an external heat source, L is the latent heat 
of phase transition, and the superscript dot implies differentiation with 
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respect to time. The new interface condition, Eq. (9), includes not only the 
interface velocity and the external heat flux, but also the interface accelera- 
tion and the time derivative of the flux. This is also a consequence of a 
thermal "inertia" in local-nonequilibrium systems. 

The interface condition, Eq. (7), limits the value of possible velocities 
of the interface V. At [q]--, oo, the interface condition, Eq. (7), implies 
that V ~  U, in contrast to the classical case where V--* oo. Such a limita- 
tion is valid for the phase-change wave with thermal mechanism of 
propagation due to heat conduction. Other types of phase-change waves 
with nonthermal mechanism of propagation, for example, shock waves, can 
propagate with V> U. EIT limits the value of heat flux itself and yields a 
maximum value for the heat flux at a given energy density qmax = cpTU 
[ 18 ]. Hence, the maximum value for V= Vm,x is less than U and can be 
estimated from 

- v . . . .  / g  ) cpTU=LVm.,,(  1 2 2 -I 

2.3. Steady-State Regime 

Let us consider the interface moving with a constant velocity V. Such 
a steady-state regime can be described by HHCE, Eq. (3), in a frame of 
reference moving with velocity V in the X direction: 

( l ~ 2 )  d2T V dT 1 vdW'~ 
-- ~--X--5 + a d--~ + ~ ( W -  r - ~ ) = 0  (10) 

Ahead of the interface X>  0 there is no external heat source, i.e., W= 0, 
and this equation results: 

T( X) = ( Tl -- To) exp(/tX) + To 

V 1_~5_, (11) ll = - - a  

These expressions describe the steady-state temperature profiles ahead of 
the interface X > 0  in a moving reference frame (its origin X = 0  fixed on 
the interface). The characteristic dimension X* of the heated layer ahead of 
the interface is determined by the following relation: 

a - ~ - -  X * = p - l = ~  1 (12) 

It follows from Eq. (12) that X * ~ 0  as V---,U. This result differs 
fundamentally from the classical case, where X* ~ 0 only when V--* oo. 
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In the classical case V,~ U, Eqs. (8) and (11) yield a continuous tem- 
perature profile without overheating: 

T(X) = (Tin - To) exp( - VX/a) + To (13) 

At a high melt-front velocity, V2/U 2 =0.3, the temperature profiles differ 
substantially from those predicted by the classical theory at V,~ U, in 
Eq. (13). First, the local-nonequilibrium effects lead to strong overheating 
of the solid. Second, the heated layer, Eq. (12), is much less than the classi-' 
cal heated layer a~ V [ see Eqs. ( 11 )-(13) ]. Third, the local-nonequilibrium 
heat transport results in the temperature gradient at the interface steeper 
than expected from classical consideration. Differentiating Eqs. (11) and 
(13) with respect to X, one obtains 

dT dT ( T 1 z T o ~ ( l _ V Z " x - '  
hyp = d Y  par k, Zrn - -  To/ /k 

(14) 

At VZ/U2=0.3, the hyperbolic model predicts that the interface tem- 
perature gradient is twice as high as the temperature gradient expected 
from the classical, parabolic model [see Eq. (14)]. This effect, i.e., the tem- 
perature gradient steeper than expected from the classical heat flow calcula- 
tions, has been observed in the pulsed laser melting of germanium [8 ]. 

3. KINETICS OF LOCAL-NONEQUILIBRIUM MELTING 

The phenomenological theory of melting [2] expresses the velocity of 
a liquid-solid interface as the difference between a melting and a freezing 
flux, i.e., 

Vsl =Ksl--KI~ (15) 

Kst is the rate (in velocity units) at which atoms leave the solid (subscript 
s) and join the liquid (subscript 1), while/(is is the rate for the reverse pro- 
cess. It is assumed that Ks¿ and Kt~ represent activated processes and are 
written as 

K~ = v~f sh~ exp(-E2/RT2) (16) 

Kls = v l f  tht exp(--EI/RT1) (17) 

where E 2 and Ej are the activation energies, i.e., the effective barrier 
heights against s ~ 1 and 1 ~ s jumps, respectively; v~ (i = s, 1) is the atomic 
vibration, or attempt frequency; h; is the average jump distance; and fj is 
the fraction of interracial sites at which attachment can occur. Thus, an 
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expression for melt-front velocity can be obtained in the form [see Eqs. 
(15)-(17)] 

Vsl = Us exp(--Ez/RT2) -- U~ exp(-E~/RT~) (18) 

in which Us = vsfshs is the limit (maximum) for the melting velocity and 
U~ = v~f~h~ is the limit for the crystallization velocity. Here, Us is of the 
order of the speed of sound in the solid, which, in turn, is of the order of 
the speed of heat wave U [see Eq. (5)]. In the equilibrium, i.e., at V = 0  
and Tl = T2 = Tin, Eq. (18) reduces to 

Us exp(-L/RTm) = U~ (19) 

where L = E 2 -  E~ is the latent heat of melting at the equilibrium tem- 
perature T =  T,,. Equation (19) clearly demonstrates that the maximum 
freezing rate UI is lower than the maximum melting rate Us by the factor 
e x p ( -  L/RTm). Such "asymmetric" behavior is consistent with the measure- 
ments of melting and freezing velocities of amorphous Si and has been 
interpreted by taking the entropy as the barrier to crystallization and the 
enthalpy as the barrier to melting [ 10]. The kinetic approach interprets the 
asymmetry in terms of the different heights of the effective barriers and dif- 
ferent maximum rates for melting and freezing. The rate of melting can be 
written in the form 

( ( . Vsl = Us 1 - exp RTm RT1 RT2,/ , /exp E2 

In the same way, the rate of freezing can be given as 

g,~ 

If the system is not far from local-equilibrium, then TI = T2 and E,_- Et = 
L. In such a case, Eqs. (20) and (21) reduce to 

Vs,=Us(1--exp(-RZ--~9 (Z-Zm)))exp(---~2) (22)  

Vis=.Ul(1-exP(RZ--~s(T-Zrn)))exp(-~'-~l ) (23) 

with T>  Tm for melting, and T <  Tm for solidification. If the interface moves 
with a high velocity V~ U, then the system is far from local-equilibrium 



1096 Sobolev 

at the interface and the temperature difference T 2 - T I is determined by the 
relaxational conditions, Eqs. (6) or (8). According to EIT [14], the 
generalized Gibbs equation and entropy production equation have the 
form 

dS= dS~q 22T2 q. q (24) 

~r= a e q - ~ - 5  q. c ) (25) 

where 8eq and Creq are the equilibrium entropy and entropy production, 
respectively. The nonclassical terms [i.e., the last terms in Eqs. (24) and 
(25)] come into play when the system is far from local equilibrium, i.e., 
when the relaxation time r, is of the order of the characteristic time of the 
process. In terms of an interface velocity V, the system is far from local 
equilibrium if V~ U [ 16]. In the steady-state regime, i.e., when the inter- 
face moves with a constant velocity V= const, Eq. (25) can be rewritten as 

v dq 
(26) 0" = O'eq UZT2cp q. 

Thus, in the local-nonequilibrium case, the entropy production depends on 
the interface velocity V. It implies that all the thermodynamic functions 
(entropy, Gibbs free energy, chemical potential) as well as the effective 
barrier heights in Eqs. (20) and (21) are velocity dependent. The effective 
barrier change zIE= E 2 -  E~ and the Gibbs free energy change zIG, which 
is considered as the driving force for crystallization [1, 7, 19], can be 
expressed in the form 

zIE = zIEeq + zIE(V) (27) 

zIG = zIGeq -Jr- z I G ( V )  (28) 

where ziEeq and ziGeq a r e  the classical terms, and ZIE(V) and ZIG(V) are 
the local-nonequilibrium terms. AE(V) and zIG(V) may be complicated 
functions of V, but they must go to zero as V ~  0 and to their maximum 
values at V ~  U. The expressions for zIE(V) and zIG(V) can be obtained 
in the framework of EIT [ 14] and it is planned to be reported in future 
papers. Thus, the relaxation process leads to velocity-dependent thermo- 
dynamic functions, i.e., it applies feedback from the interface velocity to 
driving force for solidification. 
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